Skip to main content

VLSI Basics

 An integrated circuit (IC) is a small semiconductors-based electronic device consisting of fabricated transistors, resistors, and capacitors. Integrated circuits are the building blocks of most electronic devices and equipment .

There are two main advantages of ICs over discrete circuits: cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, much less material is used to construct a packaged IC die than a discrete circuit. Performance is high since the components switch quickly and consume little power (compared to their discrete counterparts) because the components are small and positioned close together. As of 2006, chip areas range from a few square millimeters to around 350 mm2, with up to 1 million transistors per mm.

Moore’s Law:

The level of integration of silicon technology as measured in terms of the number of devices per IC Semiconductor industry has followed this prediction with surprising accuracy. 

“The number of transistors on an integrated circuit will double every 18 months”.


IC Technology: 

• Speed / Power performance of available technologies.





The scale of Integration:

  Small scale integration(SSI) --1960 The technology was developed by integrating the number of transistors of 1-100 on a single chip. Ex: Gates, flip-flops, op-amps. 

 Medium-scale integration(MSI) --1967 The technology was developed by integrating the number of transistors of 100- 1000 on a single chip. Ex: Counters, MUX, adders, 4-bit microprocessors. 

 Large scale integration(LSI) --1972 The technology was developed by integrating the number of transistors of 1000- 10000 on a single chip. Ex:8-bit microprocessors, ROM, RAM. 

 Very large scale integration(VLSI) -1978 The technology was developed by integrating the number of transistors of 10000- 1Million on a single chip. Ex:16-32 bit microprocessors, peripherals, complimentary high MOS. 

Comments

Popular posts from this blog

MOST IMPORTANT QUESTIONS FOR INTERVIEW

  Q 1: What are the goals of Synthesis Q 2: What are the Tech inputs in PNR Q 3: What are the Design inputs in PNR Q 4: What are the types of cells in PNR Q 5: What are the types of IO pads Q 6: What is the purpose of IO pads Q 7: What is the use of Bound pad Q 8: How tool differentiate the stdcell, IOpad and Macro Q 9: What is difference between soft and hard macro Q 10: How tool calculate the rectilinear blocks area Q 11: Can we rotated the Macro in 90 or 270 degrees Q 12: Assume you have three types of block 7, 9, 12 Metal layers in 28 nm Technology  which having more performance and why 13: Which inputs files having resistance and capacitance values Q 14: We have different RC corners im i right, why we have different RC corners Q 15: How multi cut via increase the performance and yeild. Q 16: In which stage normal flop converted into scan flop Q 17: what is difference between normal flop and scan flop Q 18: what is scan chain where we are used it

Double patterning ?

Double patterning in VLSI:         Multi patterning also called double patterning ,double patterning is introduced 32nm and lowers layers 10nm,7nm etc.        Lithography pattern is a class of technologies for manufacturing IC's,developing for photolithography to enhance the feature of density and Optical microlithography (photolithography) is used for transferring the circuit patterns into silicon wafer.      We are use illuminator uv light to shine light through this mask producing an image of the pattern  through the lens system ,which eventually projected down into a photo resist coated silicon wafer using a protection system.      Double patterning is a technique that decomposes a single layout into two masks in order to increase pitch size and improve depth of focus.     Their resolution capabilities have fallen further and further behind the target minimum feature size per each advanced nodes.     their resolution capabilities have fallen further and further behind the targe

Synthesis Goals

                                                          SYNTHESIS           CONCETPTS 1.what is synthesis 2.synthesis input files 3.goals of synthesis 4.synthesis process 5. .synthesis output files 6.Types of synthesis “ Synthesis transforms the RTL code of design modules into a gate-level netlist”.  Important: This stage performs logic, area, power optimization, and scan insertion.  Synthesis input files: 1.      Timing library (.lib or .db) 2.      Physical Library (lef, Milkyway) 3.      SDC 4.      RTL 5.      DEF (For Physical aware Synthesis) 6.      TLU+(Synopsys), Qrc(cadence) file 7.      UPF Goal of Synthesis: 1.      Logic optimization with good QoR 2.      Scan insertion (DFT) 3.      Netlist generation 4.      Logical equivalence check should be preserved between the RTL and netlist   INPUTS : 1.      LIB:  The timing library (.lib) contains information related to the timing, power, and area of standard cells. It also contains different PVT characterizations of cells. 2.