Skip to main content

VLSI Basics

 An integrated circuit (IC) is a small semiconductors-based electronic device consisting of fabricated transistors, resistors, and capacitors. Integrated circuits are the building blocks of most electronic devices and equipment .

There are two main advantages of ICs over discrete circuits: cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, much less material is used to construct a packaged IC die than a discrete circuit. Performance is high since the components switch quickly and consume little power (compared to their discrete counterparts) because the components are small and positioned close together. As of 2006, chip areas range from a few square millimeters to around 350 mm2, with up to 1 million transistors per mm.

Moore’s Law:

The level of integration of silicon technology as measured in terms of the number of devices per IC Semiconductor industry has followed this prediction with surprising accuracy. 

“The number of transistors on an integrated circuit will double every 18 months”.


IC Technology: 

• Speed / Power performance of available technologies.





The scale of Integration:

  Small scale integration(SSI) --1960 The technology was developed by integrating the number of transistors of 1-100 on a single chip. Ex: Gates, flip-flops, op-amps. 

 Medium-scale integration(MSI) --1967 The technology was developed by integrating the number of transistors of 100- 1000 on a single chip. Ex: Counters, MUX, adders, 4-bit microprocessors. 

 Large scale integration(LSI) --1972 The technology was developed by integrating the number of transistors of 1000- 10000 on a single chip. Ex:8-bit microprocessors, ROM, RAM. 

 Very large scale integration(VLSI) -1978 The technology was developed by integrating the number of transistors of 10000- 1Million on a single chip. Ex:16-32 bit microprocessors, peripherals, complimentary high MOS. 

Comments

Popular posts from this blog

unlock surprise too see commands

                                  SynopsysTool Commands                                       How to add ndms in ref_libs Open block.tcl file Report_ref_libs information dump in a new tcl file Now go to icc2shell set_ref_libs -add missed ndm file---> from block.tcl file set_ref_libs -rebind link_block -force report_ref_libs save_block save_lib How to resolve upf error ? commit_upf save_block save_lib How to move ESD cell with origin coordinates ? move_objects [get_selection ] -to {7486.0965 3288.0000} How to select all the cells which have net name VDD_1V2_IO ?  change_selection [get_cells -of_objects [get_net VDD_1V2_IO]] Cmd for to check shorts  check_lvs -max_error 0 -checks short ----->for to check shorts How to add buffers add_buffer -lib_cell ec0cbf000an1n20x5 -new_cell_names 01122...

QUESTION&ANSWERS

  Q 1: What are the goals of Synthesis ? There are Mainly three goals of synthesis without changing the functionality Reduce the area (chip cost reduce) Increase performance Reduce the power Q 2: What are the Tech dependent inputs in PNR There are three main tech depended inputs Physical libraries    -->format is .lef     --->given by vendors Technology file       -->format is .tf       --->given by fabrication peoples TLU+ file                   -->format is .TLUP-->given by fabrication people Q 3: What are the Design dependent inputs in PNR There are six main design depended inputs Logical libraries      --> format is .lib    --->given by Vendors Netlist          ...

Multiple Voltage Design

MODERN TECHNIQUES                                                      Modern IC designs are heavily influenced by the need to minimize power consumption, particularly in the consumer electronics market. The devices' warmth, battery life, and the time it takes to switch on and off the functions of handheld devices are currently being reformed. Therefore, it becomes crucial to implement best practices in chip design to help reduce power consumption in SoCs (System on Chip). The power management of SoCs and RTL designs has a significant impact on the silicon's performance. Power-aware designs are used by industry to achieve power statistics. This blog focuses on multi-voltage design terms that can be used to assess the power performance of silicon in HDL coding. These facilitate the understanding of design parameters while implementing power-consciou...